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Abstract-In a previous paper the authors developed an explicit scheme for the numerical solution of the 
equations of isotherm migration along orthogonal flow lines in two space dimensions. This paper 
presents an implicit scheme. It is used to solve a two-dimensional one-phase Stefan problem and results 

are compared with those obtained by other methods. 

NOMENCLATURE 

L, non-dimensional latent heat; 

4 nj,,, 1rj.A; 

‘Tj,mY increment in nj,,, during time step At; 
r, radical coordinate ; 

rj.m, radius of curvature of isotherm 

j6 u at point m (see Section 3); 

%I, length of chord m ; 

S(r, y, t) = 0, freezing front ; 
L non-dimensional time; 

At, time step; 

u, non-dimensional temperature; 

6u, temperature step; 

-y, Y, Cartesian coordinates. 

Greek symbols 

Ymr half-angle subtended at centre of 
curvature by chord m (see Section 3); 

6 angular coordinate ; 

* mr angle between perpendicular bisector 
of chord m and .Y axis 
(see Section 3). 

Subscripts 

J? pertaining to isotherm with 
temperature j6 u ; 

m, pertaining to point (or chord) m. 

1. INTRODUCTION 

IN THIS paper we consider a reformulation of 
problems of two-dimensional heat conduction in an 
isotropic medium. In such a material the heat flow is 
always normal to an isotherm. Thus there exists a 
natural set of othogonal curvilinear coordinates for 
the problem, one family of coordinate lines being the 
isotherms, and the other the lines of heat flow. 
Following the ideas of Dix and Cizek [l] Crank and 
Phale [2] we seek to exploit the orthogonality of the 
isotherms and flow lines, in order to write the partial 
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differential equation of heat conduction in a locally 
one-dimensional, but non-linear, form, and hence 

track the motion of such isotherms. This is analogous 
to the Lagrangian formulation of fluid flow, in which 
the motion of particular particles of fluid is calcu- 
lated, rather than the velocity distribution at fixed 
points in space. In the reformulated equation the 
independent variables are the temperature and time. 
This isotherm migration method (IMM) is suitable 
for phase change problems, in which the phase 
change interface is an isotherm, and is especially 
useful if the position of the interface, rather than the 
temperature distribution, is of particular interest. 

In a recent paper [3] the IMM along orthogonal 
flow lines was introduced, and applied to a simple 
two-dimensional problem, using an explicit finite- 
difference scheme to solve the derived equations. 
Here we describe an implicit numerical technique for 
a linearised form of the partial differential equation, 

which permits longer time-steps to be used, with a 
corresponding increase in computational efficiency. 
The method is used to solve a more exacting 
problem than that in [3], and the results are 
compared with those obtained using the scheme 
described in [3], and those of other authors, 

2. IMM REFORMULATION OF TWO-DIMENSIONAL 
HEAT CONDUCTION 

In cylindrical polar coordinates (r,B) the partial 
differential equation of heat conduction may be 
written, in non-dimensional variables, as 

(1) 

where u denotes the temperature, and the thermal 
properties are assumed constant. Following [l], the 
change of dependent variable from u(r,0,t) to 
r(u, 0, t) yields the differential equation 

(2) 

331 
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In two-dimensional heat conduction in an iso- 
tropic material, the isotherm at any point moves 

normal to itself, along the heat flow lines. For a short 

interval of time, we may regard the centre of 
curvature of each segment of an isotherm as 
remaining fixed, and identify the local radius of 
curvature with r in equation (2) and the centre of 
curvature with the origin of a purely local set of 
plane polar coordinates. Thus equation (2) may be 
used to calculate the local velocity (h/h) of the 
isotherm normal to itself, along its radius of 

curvature. 
In a general heat flow problem the set of isotherms 

will rotate, and the centre of curvature will move 
with time. Thus the local centre and radius of 
curvature must be recalculated at each time interval 
by a geometrical procedure. However, provided the 
time steps are sufficiently small for the movement of 
the centre of curvature during any one step to be 
negligible, (2) reduces to 

(3) 

once r is identified as the local radius of curvature. 
For a fuller discussion of this derivation see [3]. 

The procedure to obtain a numerical solution thus 
involves two distinct stages: firstly, a geometrical 
calculation to determine the local centres and radii 

of curvature at points along each of a set of 
isotherms; and secondly, the solution of (3) and the 
calculation of the resulting motion of each isotherm 

along the normal to itself. We describe the geometri- 
cal procedure in the next section, and then discuss 
the solution of the differential equation in Section 4. 
In Section 5, the application of the method to 
moving boundary problems is outlined, before a 
numerical example is solved in Section 6. 

3. THE CALCULATION OF THE 
LOCAL COORDINATES 

Consider the segment of the isotherm ABC (shown 
in Fig. 1) which we regard as a circular arc, concave 
downwards, and to which we assign positive curva- 
ture. The tangents at the midpoints P,Q of each of 
the arcs AB,BC are parallel to the corresponding 
chords AB,BC. Thus the change in direction of the 

FIG. I. Sketch illustrating the geometrical procedure used 
to determine the normal to each isotherm. 

tangent along the arc QBP is given by ($, - $, + i), 
where $,,,($,,,+i) is the angle the perpendicular 
bisector of the chord AB(BC) makes with the .x axis. 
Then the radius of curvature at the point B with 
coordinates (x,, y,) may be written as 

as ( ! s Inil +%I 

rm = G m = a$??-10,, 1)’ (4) 

where s,(s,+,) denotes the length of the chord 
AB (BC) and the arc length PBQ is approximated by 

(s,+s,+, )/2. Regarding BQ as a circular arc of 
radius Ir,,, and length s,+,/2, the angle Y,,, may be 
approximated by s,+,/21r,,,I. The direction of the 
normal at B is then given by 

%I= *,+1 +Ymsinrm=*m+, +s,+,/2r,. (5) 

4. AN IMPLICIT NUMERICAL METHOD 

In this section we describe an implicit scheme for 
the solution of a linearised form of equation (3). 
Consider at time i6t three adjacent isotherms with 
temperatures (j- 1)&u, jfiu, (j+ I)&, and in Fig. 2 let 
A,B(xj,,,yj,J, C denote three points on the isotherm 
jfiu, where coordinates are known. The points F,G 

FIG. 2. Sketch showing the relative positions of isotherms. 

may be found by calculating the points of in- 
tersection of the radius at B with the chords 
approximating the isotherms (j-t 1)6u, (j- 1)6u. Let 
nj,,,=IrjJ be the distance of B from the centre of 
curvature of arc ABC, and let n,:,,,, nj,, denote the 
distance of F, G respectively from the same centre of 
curvature. For any distance ,f‘ let Af’ denote the 
increment off from i6 t to (i + l)&, where & is the 
size of the time step. 

A Crank-Nicolson scheme for equation (3) may 
be written as 

(6) 
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Then, at time iSt, the finite-difference approxi- FF’. Let ‘j+l,t+l,j,m denote the angle between nj,nt 

mations are and I?~+~,~+ 1, with Lj+ I,k,j,m defined similarly, and 
suppose that F divide the chord sj+ I ,k+ I in the ratio 

(7) a$. Then 

and Al& = B 
-Atlj + l,kCOSAj+ ~,k,j,m 
cl+@ 

Pi1 

i ! 

l?i:, - 2Ej,, -I- nim 
-= 
au2 

(8) 
fl f&)2 . +- ’ At?j+l~k+ICOS;tj+t.t+l,j,m 

z+B 
(12) 

At (i+ l)&, each of the quantities tlj,,, tz&, tz,& has 
changed due to the motion of the isotherms, and we 
have instead 

and there is a similar expression involving the 
isotherm (i- 1)bu for At?,;,,,. 

(9) 
Thus, on substituting for An&, An,:,,, in (11) we 

obtain a set of linear equations for the increments 

and 
Ani,,. 

Substituting from (7)-(10) into (6) and retaining only the first-order terms in the small quantities, we obtain 

If we can write AtI& in terms of Anj+ t,k+ ,, Atzj+ l,k+l 
for some points-of l,k), (j+ l,k+ 1) on the isotherm 
(i+ l)bu, and similarly for An&, we have then a set 
of linear equations to solve. 

To this end consider fhe change in tl&, the 
distance of the point of intersection of the radius at 
B&m) with the chords approximating the isotherm 
(j+ I)& from the centre of curvature at B. Suppose 
F lies on the chord s~+~,~+, joining the points 
G+l,k+l), (j+l,k), and that at time (i+l)& the 
chord has moved as shown in Fig. 3, the new 
inters~tion point being labelled by F’. We regard the 
centre of curvature at B as remaining fixed through- 
out the time step, and hence An& is the distance 

FIG. 3. Sketch illustrating the procedure used to determine 
An&, An,<,,. The broken lines through j+ 1,k and j+ i,k+ 1 

are parallel to “z~,~. 

nj,m \ 2nj,m I 
~ , 

If the coordinates of the point m on the isotherm 
j&u at time i&t are denoted by ~fi,~, J&, then the new 
coordinates at time (i+ I)& are 

.x$+,1 =L & + An;,, cos 6j,, (13) 

i + ’ Yj,m = yj,, + An:,m sin 0$,,, (14) 

where At&,, is given by the solution of equation (11) 
and ei,, by equation (5). 

Thus if initial data are given as the coordinates of 
a number of points along each of a set of isotherms, 
we can use the method described here to advance the 
isotherms in a succession of time steps 6t. It should 
be noted that the equations derived above remain 
valid if any of the isotherms is, or becomes a straight 
line. In this case (4) and (5) imply that 

6n = i, = &l+l. In (7)-(10) only the differences 
+ 

“j,m - njh nj,, -n,&, appear, and these are calculated 
directly from the coordinates of the points B,F, G. 
Hence the calculation procedure remains unchanged, 
and in this case no approximation is made in 
regarding the isotherm as being composed of straight 
line segments. 

5. MOVING BOUNDARiES 

Stefan problems, that is problems of heat con- 
duction with change of phase, are of practical 
importance, and have attracted considerable interest 
in recent years (see for example [4]). In such a 
problem two boundary conditions are prescribed on 
the unknown phase-change interface, which moves 
through the material. These conditions are that the 
interface is at the melting temperature, and an 
expression of the heat balance across the interface. If 
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the interface is given by S(r,t) = 0, these conditions 
may be written in non-dimensional form as 

u=o 

+.VSI--Vo.VS,+ 

(15) 
on S(r,t) = 0, (16) 

where I+ (I-) denotes the limit as S is approached 
from the liquid (solid) phase. 

As the interface is an isotherm, these conditions 
take a particularly simple form in the IMM 
formulation. The condition (16) may be written as 

Lz = ~~!-‘~_ --($$‘I+, on u = 0, (17) 

where n is the local radial coordinate, measuring the 
distance from the local centre of curvature. This 
expression is then used instead of equation (3) to 
calculate the motion of the isotherm u = 0. 

Consider for simplicity a one-phase problem in 
which the solid phase is at the melting temperature 
u = 0. Using the notation of the previous section, at 
the point m on u = 0, (17) may be written as 

Then 

dn + nj.m 
au (i + I ),,, = 

- nj,,, + An,;,,, - Anjsm 

&I 

and substituting in equation (18) yields 

Anj,,,= - 
i3t.h 

i 

Ani:, - Aym 

Un.k - nj,,) I- 2(nj:,-n;,,) ’ (19) 

where An,:,,, is calculated from equation (12) as for 
the other isotherms. The new coordinates of the 
point (0,m) at time (i+ l)& are calculated using 
equations (13) and (14). 

6. AN EXAMPLE 

The numerical method described in the previous 
sections was used to calculate the solution to a two- 
dimensional one-phase Stefan problem. The example 
chosen is one of those solved by Jamet and Bonnerot 
[5], with whose results those calculated by the IMM, 
using both the implicit technique of this paper and 
the explicit scheme discussed in [3], are compared in 
the next section. The rectangular region 0 <s < I, 
O<y 64 initially contains ice at the melting tem- 
perature in y > 2 + cosnx, and in y < 2 +cosnx water 
with temperature distribution 

u(x,y,O)= I- y 
2+cos7KY 

(7-O) 

All the sides are insulated, except y = 0 where the 
temperature u = 1 is maintained. Thus the equations 
are 

l?U 
- = v2u, 
at 

with 
u = 0. 

?S 
;~t = Vu.VSI + on S(s,y, t) = 0, (22) 

and the boundary conditions are 

1~= I ony=O, 

u~,=Oon.~=0..~=l;u,=Oon~=4, (23) 

with the initial temperature distribution (20). 
This problem is more exacting than the example to 

which the IMM was applied in [3] for several 
reasons. Firstly, the radius of curvature is positive at 
the left-hand end of each isotherm, and negative as 
the isotherm approaches .Y = I. Therefore, proceed- 
ing in the direction of .Y increasing along any 
isotherm the curvature increases from finite positive 
values, through infinity, and then from negative 
infinity to finite negative values. the central part of 
each isotherm being virtually straight. Care is 
necessary to ensure that the finite-difference equa- 
tions are written correctly when rj,,<O and 
Ilj,m = -rj_,. The second difficulty arises from the 
nature of the initial distribution. If we concentrate 
attention first on the left-hand boundary .Y = 0, we 
can identify in (3) ?r./?t with ?y/it since on Y = 0 the 
isotherms are concave downwards and the centres of 
curvature are on .Y = 0. When the necessary de- 
rivatives are obtained from equation (20) and 
substituted into equation (3) we find that 

?I’ 
(9 ., = 0 

= -nZ(l -y), <O,O<u< I. 

However, from the heat balance condition (22) for 
the phase change interface 11 = 0 we have 

?v 
I =+;. 
?t \=” 

This means that, at t = 0, all the isotherms except 
u = 0 initially move in the direction of J’ decreasing 
at the left-hand end, whereas the interface, u = 0, 
moves upwards. In fact, we have a discontinuity in 
?y/?t at t = 0 on the boundary, s = 0, and we must 
expect our finite-difference formulae to suffer a loss 
of accuracy there. To be more precise, an uneven spatial 

distribution of the isotherms develops in this region, 
there being a zone of nearly zero temperature 
gradient behind the interface near s = 0. It was 
found that adding an extra isotherm with tempera- 

ture $%I improved the results. 
A similar analysis of isotherm movement at t = 0 

on the right-hand side, .Y = I. shows that all 
isotherms move upwards initially. For O<u< 1, 
?y/atl,= 1 = x2(1 -u) and for II = 0, ?y/?tl,= 1 = 1. 
These statements about isotherm movements are 
consistent with h/h. calculated at t = 0 from (20) 
and (21), which is negative on s = 0 and positive on 
x = I for O< u < 1. Physically. we have at t = 0 a 
temperature gradient from left to right along any line 
of constant y and it is the associated sideways heat 
flow which causes the isotherms to move downwards 
on .x = 0 and upwards on s = 1. 
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Table 1. Comparison ofresults obtained for the position ot the front with IOor 11 isotherms,implicit and 
explicit schemes. (The last column shows the results obtained using a modified formula involving three 

isotherms near the front) 
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Implicit Explicit 

I1 IO I1 10 1 I isotherms 
t isotherms isotherms isotherms isotherms 3 pt. formula 

x = 0 0 3 
0.2 3.022 
0.4 3.034 
0.6 3.046 
0.8 3.059 
1.0 3.073 
1.2 3.088 
1.4 3.104 
1.6 3.122 
1.8 3.141 
2.0 3.161 

x= 1 0 
0.2 
0.4 
0.6 
0.8 
I.0 
I.2 
I.4 
1.6 
I.8 
2.0 

I 
I.456 
I.707 
1.876 
2.013 
2.132 
2.238 
2.336 
2.427 
2.511 
2.59 1 

3 3 
3.030 3.022 
3.048 3.034 
3.067 3.046 
3.086 3 059 
3.106 3.073 
3.127 3.087 
3.150 3.103 
3.173 3.120 
3.198 3.139 
3.224 3.159 

I 1 
I.406 1.449 
I.642 1.683 
1.812 I.850 
I.951 I.987 
2.073 2.106 
2.183 2.211 
2.283 2.309 
2.377 2.400 
2.466 2.485 
X5.50 2.567 

3 3 
3.030 3.018 
3.048 3.027 
3.066 3.037 
3.085 3.047 
3.105 3.057 
3.126 3.069 
3.148 3.083 
3.171 3.097 
3.196 3.113 
3.221 3.131 

I 1 
1.372 1.489 
1.606 
1.777 
1.918 
2.041 
2.153 
2.257 
2.352 
2.442 
2.526 

1.720 
1.886 
2.019 
2.133 
2.239 
2.337 
2.426 
2.512 
2.594 

Table 2. Comparison of positions of the interface ends obtained by various methods. (The results in the 
first three columns were obtained using the techniques described in [5,6,7] respectively, those in the 
fourth column by the implicit IMM introduced here and those in the fifth column by the explicit 

IMM [3]) 

On Y = 0 

J&B RMF Enthalpy 

r51 [‘31 II71 

3 3 3 
3.021 3.015 3.031 
3.06X 3.054 3.051 

IMM 
I1 isotherms 

implicit 

3 
3.073 
3.161 

IMM 
11 isotherms 
3 pt. formula 

explicit 

3 
3.057 
3.131 

Onu= I 

0 1 I 1 I I 

I 2.1 18 2.095 2.124 2.132 2.133 
2 2.610 2.585 2.566 2.591 2.594 

To solve equations (21)-(23) the equations were 
rewritten in the IMM form, with the initial isotherm 
positions calculated from equation (20). Initially 
C+ I points (O-C) were taken at equal intervals in s 
on each of B+ I isotherms. The local centre and 
radius of curvature is calculated at each point as in 
Section 3, in order to set up the equations for the 
increments AH~,,,, (I 1) being used within the liquid 
phase, and (19) on the interface u = 0. These 
equations are then solved using Gauss+Seidel 
iteration, and the new coordinates are calculated 

from (13) and (14). These two parts, the geometrical 
procedure followed by the solution of the equations 
and calculation of the new isotherm positions, are 
repeated at each time step. 

The motion of the endpoints of the isotherms 
needs special treatment. Since each of the sides 
.Y = 0, .Y = 1 is thermally insulated the heat flow at 
the endpoints of the isotherms is in the y direction. 
The radius of curvature at the endpoint of each 
isotherm is calculated by fitting a circle centred on 
.Y = 0 (respectively .Y = 1) through the endpoint and 
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the next interior point on the isotherm, as described 
in [3]. 

If points on a given isotherm move too close 
together, they must be respaced. In [3] the respacing 
was carried out when the distance between two 
neighbouring points decreased below a certain limit. 
However in this problem, where the ends of the 
isotherms remain on x = 0, x = 1 throughout, it is 
found that better results are obtained if the points 
are respaced whenever the difference in the x 
coordinates of successive points falls below a certain 
limit. This prevents the occurrence of a situation 
where with m increasing from Y = 0 to Y = 1, 

xj,m > -xj,m + 1 which is not prevented by the earlier 

condition if y,,, and Y~,,,+~ are sufficiently different. 
The respacing algorithm is the same as in [3] ; if xj,, 
moves too close to x~,~+~, the coordinates of the 
point (j,m) are replaced by those of the midpoint of 
the chord sj,,joirzing &m) to (j,m- 1). 

7. RESULTS AND DISCUSSION 

In Table 1 a comparison is made of the position of 
the moving boundary on the lines x = 0, N = 1 as 
calculated using 10 and 11 isotherms, the extra one 
being that with temperature &1/2, and 11 points on 
each isotherm. The results obtained using both the 
implicit scheme with 6t = 0.0008 and 10 isotherms, 
and the explicit scheme with 6t = 0.0004 and 10 or 11 
isotherms, are given. In the last column of Table 1 

the results obtained using a three isotherm formula 
for an/au at the phase change front are given. The 
computation time on a CDC 7600 was about 320s 
for the explicit scheme with 11 isotherms, 290s with 
10 isotherms. For the implicit scheme with 10 
isotherms the time was 22Os, but with 11 isotherms 
was 810s. The insertion of the extra isotherm 

necessitates a much smaller time step in order that 
the iterative scheme used for solving equations (11) 
and (19) will converge near the front on .Y = 1. The 
time step used was 6t = 0.0001 until t = 0.1, 
6t = 0.00025 thereafter. The number of iterations 

was typically only three. Thus, with the extra 
isotherm, the usual advantage of an implicit 
scheme-a larger time step-is lost, and the com- 
putation time is greatly increased. 

In Table 2 some results obtained for this problem 
by other methods are shown for comparison. It is 
immediately seen that, for small times, the boundary 

as calculated by IMM moves rather fast on x = 0, 
and rather slowly on Y = 1. This is caused by using 
points too far from the moving boundary in 
evaluating the heat flux there, and results in an over- 
estimate of the flux on .Y = 0, where the temperature 
profile is concave upwards, and an under-estimate 
on .X = 1 where the temperature profile is convex 
upwards. It is this observation that indicates the 
need for the extra isotherm with temperature 6u/2, 
and explains the improvement shown in the results 
in Table 1. 

We have explained in Section 6 above the exacting 
nature of the example chosen which was not 

previously suspected. The presence of the discon- 
tinuity in isotherm velocity at t = 0, particularly on 
the boundary .Y = 0, makes this region an undesir- 
able one in which to compare methods and obscures 
the relative merits of the implicit and explicit 
algorithms. However, experience in other parts of the 
domain indicates that in general the implicit scheme 
offers the usual advantage over an explicit one in 
enabling the use of longer time steps, especially if a 
more efficient iterative scheme were adopted. 
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SUR UN SCHEMA IMPLICITE POUR LA METHODE DE MIGRATION ISOTHERME LE 
LONG DES LIGNES ORTHOGONALES DANS DEUX DIMENSIONS 

R&urn&Dans un article p&&dent les auteurs ont divelopp& un schtma explicite pour la solution 
numerique des tquations de la migration isotherme le long des lignes orthogonales de d&placement dans 
deux dimensions spatiales. On prksente ici un schema implicite. On l’utilise pour resoudre un probltme 
bidimensionnel de Stefan avec une phase et les rtsultats sont comparts avec ceux obtenus par d’autres 

mkthodes. 
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ZU EINEM IMPLIZITEN VERFAHREN FfrR DIE ISOTHERMEN-MIGRATIONS-METHODE 
LANGS ORTHOGONALER STROMLINIEN IN ZWEI DIMENSIONEN 

Zusammenfassung--In einer friiheren VerGffentlichung entwickelten die Autoren ein explizites Verfahren 
zur numerischen Li5sung der Gleichungen der Isothermen-Ausbreitung langs orthogonaler Stromlinien in 
zwei rtiumlichen Dimensionen. In der vorliegenden Arbeit wird ein implizites Verfahren vorgestellt. Es 
wird zur Ltisung eines zweidimensionalen Einphasen-Stefan-Problems benutzt ; die Ergebnisse werden 

mit denjenigen nach anderen Methoden verglichen. 

0 HEIIBHOti CXEME riklCJKEHHOl-0 METOflA PEBIEHMII ABYMEPHOR 3AAA9W 
0 MMI-PALJMH M30TEPM BflOJlb OPTOI-OHAJlbHbIX JTMHMR TOKA 

AHHOTPUIM -- B npenbmymeii pa6o-re asTopbl paspa6oTanH XBH~IO cxeMy wcflemoro pelueHm 

,lByMepHbIX ypaBHeHld% MHrpaUWH HJOTCPM BAOJIb OpTOrOHiUIbHblX JIHHHii TOKL. B naHHOii CTaTbe 
npencTaeneHa kfemwan cxeMa,~o~opan HcnonbsyeTcn npri peweHmi neyhiepaoil w*a3Hoii 3anawi 

CTe@aHa.@NiBeAeHOC&XlBHeHHeC~3yJIbTaTWX, IIOJlyYtWIbMH~pH HCIlOJlb30BaHHHApyl-HX MeTOAOB. 


