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Abstract—In a previous paper the authors developed an explicit scheme for the numerical solution of the

equations of isotherm migration along orthogonal flow lines in two space dimensions. This paper

presents an implicit scheme. It is used to solve a two-dimensional one-phase Stefan problem and results
are compared with those obtained by other methods.

NOMENCLATURE
L, non-dimensional latent heat;
A, B> Fjl s
H; . increment in n; , during time step At;
r, radical coordinate;
rim  Tadius of curvature of isotherm
J d u at point m (see Section 3);
S length of chord m;
S(x,y,t) =0, freezing front;
t non-dimensional time;
At, time step;
u, non-dimensional temperature;

du, temperature step;
X,y, cartesian coordinates.

Greek symbols

Voo half-angle subtended at centre of
curvature by chord m (see Section 3);
0, angular coordinate;

V., angle between perpendicular bisector
of chord m and x axis
(see Section 3).

Subscripts
J pertaining to isotherm with
temperature jou;
m, pertaining to point (or chord) m.

1. INTRODUCTION

IN THIS paper we consider a reformulation of
problems of two-dimensional heat conduction in an
isotropic medium. In such a material the heat flow is
always normal to an isotherm. Thus there exists a
natural set of othogonal curvilinear coordinates for
the problem, one family of coordinate lines being the
isotherms, and the other the lines of heat flow.
Following the ideas of Dix and Cizek [ 1] Crank and
Phale [2] we seek to exploit the orthogonality of the
isotherms and flow lines, in order to write the partial
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differential equation of heat conduction in a locally
one-dimensional, but non-linear, form, and hence
track the motion of such isotherms. This is analogous
to the Lagrangian formulation of fluid flow, in which
the motion of particular particles of fluid is calcu-
lated, rather than the velocity distribution at fixed
points in space. In the reformulated equation the
independent variables are the temperature and time.
This isotherm migration method (IMM) is suitable
for phase change problems, in which the phase
change interface is an isotherm, and is especially
useful if the position of the interface, rather than the
temperature distribution, is of particular interest.

In a recent paper [3] the IMM along orthogonal
flow lines was introduced, and applied to a simple
two-dimensional problem, using an explicit finite-
difference scheme to solve the derived equations.
Here we describe an implicit numerical technique for
a linearised form of the partial differential equation,
which permits longer time-steps to be used, with a
corresponding increase in computational efficiency.
The method is used to solve a more exacting
problem than that in [3], and the results are
compared with those obtained using the scheme
described in [3], and those of other authors.

2. IMM REFORMULATION OF TWO-DIMENSIONAL
HEAT CONDUCTION
In cylindrical polar coordinates (r,8) the partial
differential equation of heat conduction may be
written, in non-dimensional variables, as
du u

+ 1 éu N ¢t )
o ot ror a0¥

where u denotes the temperature, and the thermal
properties are assumed constant. Following [1], the
change of dependent variable from u(r,6,t) to

r(u, 0,1) yields the differential equation

or % /’(0}' 21 1 orédu )
ot ou?f (7u) rr?oudf®
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In two-dimensional heat conduction in an iso-
tropic material, the isotherm at any point moves
normal to itself, along the heat flow lines. For a short
interval of time, we may regard the centre of
curvature of each segment of an isotherm as
remaining fixed, and identify the local radius of
curvature with » in equation (2), and the centre of
curvature with the origin of a purely local set of
plane polar coordinates. Thus equation (2) may be
used to calculate the local velocity (ér/dt) of the
isotherm normal to itself, along its radius of
curvature.

In a general heat flow problem the set of isotherms
will rotate, and the centre of curvature will move
with time. Thus the local centre and radius of
curvature must be recalculated at each time interval
by a geometrical procedure. However, provided the
time steps are sufficiently small for the movement of
the centre of curvature during any one step to be
negligible, (2) reduces to

or ot /f or 2_1 3)
o \our )/ \ou r

once r is identified as the local radius of curvature.
For a fuller discussion of this derivation see [ 3].

The procedure to obtain a numerical solution thus
involves two distinct stages: firstly, a geometrical
calculation to determine the local centres and radii
of curvature at points along each of a set of
isotherms; and secondly, the solution of (3), and the
calculation of the resulting motion of each isotherm
along the normal to itself. We describe the geometri-
cal procedure in the next section, and then discuss
the solution of the differential equation in Section 4.
In Section 5, the application of the method to
moving boundary problems is outlined, before a
numerical example is solved in Section 6.

3. THE CALCULATION OF THE
LOCAL COORDINATES
Consider the segment of the isotherm ABC (shown
in Fig. 1) which we regard as a circular arc, concave
downwards, and to which we assign positive curva-
ture. The tangents at the midpoints P,Q of each of
the arcs AB,BC are parallel to the corresponding
chords 4B, BC. Thus the change in direction of the

A (X ps Yo}
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me O

Fi1G. 1. Sketch illustrating the geometrical procedure used
to determine the normal to each isotherm.
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tangent along the arc QBP is given by (V,,— ¥+ 1),
where ¥, (Y,..1) i1s the angle the perpendicular
bisector of the chord AB(BC) makes with the x axis.
Then the radius of curvature at the point B with
coordinates (x,,, y,,) may be written as

(55) Sm1+ S
rm=|l77) =777,
‘M m 2('//m—l//m+1)
where s,(s,,.,) denotes the length of the chord
AB (BC) and the arc length PBQ is approximated by
(S +5Sm+1)/2. Regarding BQ as a circular arc of
radius |r,| and length s,,,/2, the angle y, may be
approximated by s, . ,/2|r,l. The direction of the
normal at B is then given by

9m=l//m+1+VmSinrm=|//m+l+Sm+1/2rm- (5)

(4)

4, AN IMPLICIT NUMERICAL METHOD

In this section we describe an implicit scheme for
the solution of a linearised form of equation (3).
Consider at time id¢ three adjacent isotherms with
temperatures (j—1)du, jou, (j+ 1)du, and in Fig. 2 let
A,B(X; . ¥;.m), C denote three points on the isotherm
Jjou, where coordinates are known. The points F,G

(J-I)au

(j+1)8u

0
F1G. 2. Sketch showing the relative positions of isotherms.

may be found by calculating the points of in-
tersection of the radius at B with the chords
approximating the isotherms (j+ 1)du, (j— 1)ou. Let
;. m=r; | be the distance of B from the centre of
curvature of arc 4BC, and let n/,, n;, denote the
distance of F, G respectively from the same centre of
curvature. For any distance f let Af denote the
increment of f from it to (i+ 1)dt, where ot is the
size of the time step.

A Crank-Nicolson scheme for equation (3) may
be written as

A 3t (%n [(en\? 1
Mim =302 \ou) " nfgiom

ot(d%n [fon\? 1
otfoin j(omy" 1| (6)
+ 2 {6u2/<6u> n},-,,,
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Then, at time idt, the finite-difference approxi-
mations are

(f’ﬁ) _ njfm—nj",m’ ™)
u/y 20u
and
(?ir—z) _ n;m——an‘m—}—n;m» ®)
du? {ou)?

At {i+1)3t, each of the quantities 1, ,, #, 1), has
changed due to the motion of the isotherms, and we
have instead

(c’)n) _ R N+ Anf,—Ang, ©)
B

ou 20u

and

1333

FF. Let 4,41 4+1,m denote the angle between n;,,
and 1;.q 4410 With Ay, 4., defined similarly, and
suppose that F divide the chord s;, 4, in the ratio
a:f. Then

Anf,=——=An, 1 4, COSAj 15 5m

e B

(12)

o
e A k4 1€08 At t k1 m

a+f

and there is a similar expression involving the
isotherm (f — 1)éu for Anj,,.

Thus, on substituting for Anj,, An;, in (11) we
obtain a set of linear equations for the increments
An; .

— | =
ou* /g

(c’?zrx ) W= 20+ 0+ A — 240, +Any,

(ou)? (10)

Substituting from (7)-(10) into {6) and retaining only the first-order terms in the small quantities, we obtain

An

_ 46t(n} = 20+ 17,)

dom (= Njm)?

(1 _Anf,— An;,,,)

("Im - nj.m)

+25t(Ai1jfmw2Anj_m+Arzjfm) ot (l Anj,,
1) 2n )

(=i

If we can write Anj, interms of Any, ¢ 41, Afjr g gy
for some points-(j+ 1,k), (+ 1,k +1) on the isotherm
{j+ )ou, and similarly for An,,,, we have then a set
of linear equations to solve.

To this end consider the change in nj,, the
distance of the point of intersection of the radius at
B(j,m) with the chords approximating the isotherm
(j+ 1)du from the centre of curvature at B. Suppose
F lies on the chord s;;,,., joining the points
(+1,k+1), (+1,k), and that at time (i+1)0t the
chord has moved as shown in Fig. 3, the new
intersection point being labelled by F'. We regard the
centre of curvature at B as remaining fixed through-
out the time step, and hence An], is the distance

Aotk gm

nj?!,kﬂ

jel kel j,m

F1G. 3. Sketch illustrating the procedure used to determine
Anj,,, An},. The broken lines through j+ 1,k and j+ 1,k +1
are parallel to ;.

(11)

If the coordinates of the point m on the isotherm
Jjéu at time i8¢ are denoted by x},, ¥} . then the new
coordinates at time {i + 1)t are

xitb = xh 4+ Anb, cosdl {13)
yiel =yt +Ank,sin 6, (14)

where Ani,, is given by the solution of equation (11)
and 65, by equation (5).

Thus if initial data are given as the coordinates of
a number of points along each of a set of isotherms,
we can use the method described here to advance the
isotherms in a succession of time steps Jt. It should
be noted that the equations derived above remain
valid if any of the isotherms is, or becomes a straight
line. In this case (4) and (5) imply that
Op =V, =, In (7)-(10) only the differences
M= N ms Njm— i, appear, and these are calculated
directly from the coordinates of the points B, F,G.
Hence the calculation procedure remains unchanged,
and in this case no approximation is made in
regarding the isotherm as being composed of straight
line segments.

5. MOVING BOUNDARIES

Stefan problems, that is problems of heat con-
duction with change of phase, are of practical
importance, and have attracted considerable interest
in recent years (see for example [4]). In such a
problem two boundary conditions are prescribed on
the unknown phase-change interface, which moves
through the material. These conditions are that the
interface is at the melting temperature, and an
expression of the heat balance across the interface. If
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the interface is given by S(r,t) = 0, these conditions
may be written in non-dimensional form as
u=20 (15)

on S(rt) =0, (16)

oS
LE =Vu-VS|_-Vu-VS§|,
where |, (|_) denotes the limit as § is approached
from the liquid (solid) phase.

As the interface is an isotherm, these conditions
take a particularly simple form in the IMM
formulation. The condition (16) may be written as

Lan_ on\"! on\~1!
o \ou _ \du

where # is the local radial coordinate, measuring the
distance from the local centre of curvature. This
expression is then used instead of equation (3) to
calculate the motion of the isotherm u = 0.

Consider for simplicity a one-phase problem in
which the solid phase is at the melting temperature
u = 0. Using the notation of the previous section, at
the point m on u = 0, (17) may be written as

,onu=0, (17)

+

sto==3i((5) 1, ) o
2L\\u G+ \oU it
Then
on _ 0= N
Oul ;s du
on C =Ry Anl, —Any
du i+t B ou ,

and substituting in equation (18) yields

NP + —

A= — (zt ou /1 —Anj'f A;‘1jv,">’ (19)
L(nj,m_nj,m)\ 2(nj.m_nj.m

where An},, is calculated from equation (12) as for

the other isotherms. The new coordinates of the

point (0,m) at time (i+1)dt are calculated using

equations (13) and (14).

6. AN EXAMPLE

The numerical method described in the previous
sections was used to calculate the solution to a two-
dimensional one-phase Stefan problem. The example
chosen is one of those solved by Jamet and Bonnerot
[5], with whose results those calculated by the IMM,
using both the implicit technique of this paper and
the explicit scheme discussed in [3], are compared in
the next section. The rectangular region 0<x< 1,
0<y<4 initially contains ice at the melting tem-
perature in y> 2 +cosnx, and in y <2+cosrx water
-with temperature distribution

Y

—_—, (20)
2+cosmx

u(x,y,0) =1
All the sides are insulated, except y = 0 where the
temperature # = 1 is maintained. Thus the equations
are

ﬁu_ 5

== 1)

>
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with

u=0,
f-g =Vu-VS|, onS(x,y,t})=0, (22)
and the boundary conditions are
u=1lony=0,
(23)
u,=0onx=0,x=1;u,=00ny=4,
with the initial temperature distribution (20).

This problem is more exacting than the example to
which the IMM was applied in [3] for several
reasons. Firstly, the radius of curvature is positive at
the left-hand end of each isotherm, and negative as
the isotherm approaches x = 1. Therefore, proceed-
ing in the direction of x increasing along any
isotherm the curvature increases from finite positive
values, through infinity, and then from negative
infinity to finite negative values, the central part of
each isotherm being virtually straight. Care is
necessary to ensure that the finite-difference equa-
tions are written correctly when r;,<0 and
Nim=—"r;n The second difficulty arises from the
nature of the initial distribution. If we concentrate
attention first on the left-hand boundary x = 0, we
can identify in (3) or/t with dy/ét since on x = O the
isotherms are concave downwards and the centres of
curvature are on x = 0. When the necessary de-
rivatives are obtained from equation (20) and
substituted into equation (3) we find that

oy

ct

= -}l —-y). <0,0<u<l.
x=0 .

However, from the heat balance condition (22) for

the phase change interface u = 0 we have
Cy 1
(‘;[ x=0 B 3

This means that, at ¢ = 0, all the isotherms except
u = 0 initially move in the direction of y decreasing
at the left-hand end, whereas the interface, u = 0,
moves upwards. In fact, we have a discontinuity in
¢y/0r at t = 0 on the boundary, x = 0, and we must
expect our finite-difference formulae to suffer a loss
of accuracy there. To be more precise, an uneven spatial
distribution of the isotherms develops in this region,
there being a zone of nearly zero temperature
gradient behind the interface near x =0. It was
found that adding an extra isotherm with tempera-
ture Séu improved the results.

A similar analysis of isotherm movement at t = 0
on the right-hand side, x =1, shows that all
isotherms move upwards initially. For O<u<|,
Oy/dtly=m*(1—u) and for u=0, Oy/dt],-,= 1.
These statements about isotherm movements are
consistent with du/ct, calculated at t = 0 from (20)
and (21), which is negative on x = 0 and positive on
x =1 for O<u<1. Physically, we have at t=0 a
temperature gradient from left to right along any line
of constant y and it is the associated sideways heat
flow which causes the isotherms to move downwards
on x = 0 and upwards on x = 1.
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Table 1. Comparison of results obtained for the position of the front with 10 or 11 isotherms, implicit and
explicit schemes. (The last column shows the results obtained using a modified formula involving three
isotherms near the front)

Implicit Explicit
11 10 11 10 11 isotherms
t isotherms isotherms isotherms isotherms 3 pt. formula
x=0 0 3 3 3 3 3
0.2 3.022 3.030 3.022 3.030 3.018
04 3.034 3.048 3.034 3.048 3.027
0.6 3.046 3.067 3.046 3.066 3.037
0.8 3.059 3.086 3059 3.085 3.047
1.0 3.073 3.106 3.073 3.105 3.057
1.2 3.088 3.127 3.087 3.126 3.069
1.4 3.104 3.150 3.103 3.148 3.083
1.6 3.122 3.173 3.120 3.171 3.097
1.8 3.141 3.198 3.139 3.196 3.113
20 3.161 3.224 3.159 3221 3.131
x=1 0 1 1 1 I 1
0.2 1.456 1.406 1.449 1.372 1.489
0.4 1.707 1.642 1.683 1.606 1.720
0.6 1.876 1.812 1.850 1.777 1.886
0.8 2013 1.951 1.987 1.918 2.019
1.0 2,132 2.073 2.106 2.041 2.133
1.2 2.238 2.183 2.211 2.153 2.239
1.4 2336 2.283 2.309 2357 2337
1.6 2.427 2.377 2.400 2.352 2426
1.8 2.511 2,466 2.485 2.442 2.512
20 2.591 2.550 2.567 2.526 2.594

Table 2. Comparison of positions of the interface ends obtained by various methods. (The results in the
first three columns were obtained using the techniques described in [5,6,7] respectively, those in the
fourth column by the implicit IMM introduced here and those in the fifth column by the explicit

IMM [3])
Onx=0
IMM
IMM 11 isotherms
J&B RMF Enthalpy 11 isotherms 3 pt. formula
t [5] (6] (7] implicit explicit
0 3 3 3 3 3
| 3.021 3.015 3.031 3.073 3.057
2 3.068 3.054 3.051 3.161 3.131
Onx=1
0 | | | 1 1
| 2.118 2.095 2.124 2,132 2.133
2 2.610 2.585 2.566 2.591 2.594

To solve equations (21)-(23) the equations were
rewritten in the IMM form, with the initial isotherm
positions calculated from equation (20). Initially
C + 1 points (0-C) were taken at equal intervals in x
on each of B+1 isotherms. The local centre and
radius of curvature is calculated at each point as in
Section 3, in order to set up the equations for the
increments An;,. (11) being used within the liquid
phase, and (19) on the interface u = 0. These
equations are then solved using Gauss—Seidel
iteration, and the new coordinates are calculated

from (13) and (14). These two parts, the geometrical
procedure followed by the solution of the equations
and calculation of the new isotherm positions, are
repeated at each time step.

The motion of the endpoints of the isotherms
needs special treatment. Since each of the sides
x =0, x =1 is thermally insulated the heat flow at
the endpoints of the isotherms is in the y direction.
The radius of curvature at the endpoint of each
isotherm is calculated by fitting a circle centred on
x = 0 (respectively x = 1) through the endpoint and
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the next interior point on the isotherm, as described
in [3].

If points on a given isotherm move too close
together, they must be respaced. In [3] the respacing
was carried out when the distance between two
neighbouring points decreased below a certain limit.
However in this problem, where the ends of the
isotherms remain on x = 0, x = 1 throughout, it is
found that better results are obtained if the points
are respaced whenever the difference in the x
coordinates of successive points falls below a certain
limit. This prevents the occurrence of a situation
where with m increasing from x=0 to x=1,
Xjm>Xjm+1 Which is not prevented by the earlier
condition if y;,, and y; ., are sufficiently different.
The respacing algorithm is the same as in [3]; if x;,
moves too close to x;,.,, the coordinates of the
point (j,n) are replaced by those of the midpoint of
the chord s; , joining (jm) to (jm—1).

7. RESULTS AND DISCUSSION

In Table 1 a comparison is made of the position of
the moving boundary on the lines x =0, x =1 as
calculated using 10 and 11 isotherms, the extra one
being that with temperature du/2, and 11 points on
each isotherm. The results obtained using both the
implicit scheme with ¢ = 0.0008 and 10 isotherms,
and the explicit scheme with ¢t = 0.0004 and 10 or 11
isotherms, are given. In the last column of Table 1
the results obtained using a three isotherm formula
for dn/0u at the phase change front are given. The
computation time on a CDC 7600 was about 320s
for the explicit scheme with 11 isotherms, 290s with
10 isotherms. For the implicit scheme with 10
isotherms the time was 220s, but with 11 isotherms
was 810s. The insertion of the extra isotherm
necessitates a much smaller time step in order that
the iterative scheme used for solving equations (11)
and (19) will converge near the front on x = 1. The
time step used was oJt=0.0001 until =01,
ot = 0.00025 thereafter. The number of iterations
was typically only three. Thus, with the extra
isotherm, the usual advantage of an implicit
scheme—a larger time step—is lost, and the com-
putation time is greatly increased.

In Table 2 some results obtained for this problem
by other methods are shown for comparison. It is
immediately seen that, for small times, the boundary
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as calculated by IMM moves rather fast on x = 0,
and rather slowly on x = 1. This is caused by using
points too far from the moving boundary in
evaluating the heat flux there, and results in an over-
estimate of the flux on x = 0, where the temperature
profile is concave upwards, and an under-estimate
on x =1 where the temperature profile is convex
upwards. It is this observation that indicates the
need for the extra isotherm with temperature Su/2,
and explains the improvement shown in the results
in Table 1.

We have explained in Section 6 above the exacting
nature of the example chosen which was not
previously suspected. The presence of the discon-
tinuity in isotherm velocity at ¢ = 0, particularly on
the boundary x = 0, makes this region an undesir-
able one in which to compare methods and obscures
the relative merits of the implicit and explicit
algorithms. However, experience in other parts of the
domain indicates that in general the implicit scheme
offers the usual advantage over an explicit one in
enabling the use of longer time steps, especially if a
more efficient iterative scheme were adopted.
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SUR UN SCHEMA IMPLICITE POUR LA METHODE DE MIGRATION 1ISOTHERME LE
LONG DES LIGNES ORTHOGONALES DANS DEUX DIMENSIONS

Résumé—Dans un article précédent les auteurs ont développé un schéma explicite pour la solution

numérique des équations de la migration isotherme le long des lignes orthogonales de déplacement dans

deux dimensions spatiales. On présente ici un schéma implicite. On lutilise pour résoudre un probléme

bidimensionnel de Stefan avec une phase et les résultats sont comparés avec ceux obtenus par d’autres
meéthodes.
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ZU EINEM IMPLIZITEN VERFAHREN FUR DIE ISOTHERMEN-MIGRATIONS-METHODE
LANGS ORTHOGONALER STROMLINIEN IN ZWEI DIMENSIONEN

Zusammenfassung -- In einer fritheren Veroflentlichung entwickelten die Autoren ein explizites Verfahren

zur numerischen Losung der Gleichungen der Isothermen-Ausbreitung lings orthogonaler Stromlinien in

zwei rdumlichen Dimensionen. In der vorliegenden Arbeit wird ein implizites Verfahren vorgestellt. Es

wird zur Losung eines zweidimensionalen Einphasen-Stefan-Problems benutzt; die Ergebnisse werden
mit denjenigen nach anderen Methoden verglichen.

O HESIBHOM CXEME YUCJIEHHOIO METOIA PEHMIEHUS JBYMEPHON 3AJJAUM
O MUTI'PALIMM HU30TEPM BJOJIb OPTOIOHAJIBHBIX JTUHUI TOKA

Annoraums — B npenwinywed pabore aBTopsl pa3paboTanM fBHYIO CXeMy HHCIEHHOTO peLLEHHs
JBYMEPHBIX YPAaBHEHHH MHMIDAlHM H30TEPM BIONL OPTOTOHAJILHBIX JIMHMA Toxa. B maHHOM craThe
NpeACTaB/IeHa HEABHAA CXeMa, KOTOpas HCHONb3YETCH NPU pPellleHHH AByMepHOi anxodasHoit 3anaun
Credana. [puseseHo cpaBHEHUE C PE3YAbTATAMHY, MOAYYCHHBIMH NPH HCTIOJIL3OBAHKHE APYFHX METOLOB.
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